Posted on

Graphene Applications

Graphene is a sheet of carbon atoms bound together in a honeycomb lattice pattern where it is a conductor of electrical and thermal energy, extremely lightweight chemically inert, and flexible with a large surface area. It is also considered eco-friendly and sustainable, with unlimited possibilities for numerous applications, however it is difficult to manufacture.

Graphene-based batteries have exciting potential and while they are not commercially available yet, R&D is intensive and will hopefully yield results in the future.

In November 2016, Huawei unveiled a new graphene-enhanced Li-Ion battery that can remain functional at higher temperature (60° degrees as opposed to the existing 50° limit) and offers a longer operation time – double than what can be achieved with previous batteries. To achieve this breakthrough, Huawei incorporated several new technologies – including an anti-decomposition additives in the electrolyte, chemically stabilized single crystal cathodes – and graphene to facilitate heat dissipation. Huawei says that the graphene reduces the battery’s operating temperature by 5 degrees.

In June 2014, US based Vorbeck Materials announced the Vor-Power strap, a lightweight flexible power source that can be attached to any existing bag strap to enable a mobile charging station (via 2 USB and one micro USB ports). the product weighs 450 grams, provides 7,200 mAh and is probably the world’s first graphene-enhanced battery.

In May 2014, American company Angstron Materials rolled out several new graphene products. The products, said to become available roughly around the end of 2014, include a line of graphene-enhanced anode materials for Lithium-ion batteries. The battery materials were named “NANO GCA” and are supposed to result in a high capacity anode, capable of supporting hundreds of charge/discharge cycles by combining high capacity silicon with mechanically reinforcing and conductive graphene.

Graphene batteries market report

Developments are also made in the field of graphene batteries for electric vehicles. Henrik Fisker, who announced its new EV project that will sport a graphene-enhanced battery, unveiled in November 2016 what is hoped to be a competitor to Tesla. Called EMotion, the electric sports car will reportedly achieve a 161 mph (259 kmh) top speed and a 400-mile electric range.

Graphene Nanochem and Sync R&D’s October 2014 plan to co-develop graphene-enhanced Li-ion batteries for electric buses, under the Electric Bus 1 Malaysia program, is another example.

In August 2014, Tesla suggested the development of a “new battery technology” that will almost double the capacity for their Model S electric car. It is unofficial but reasonable to assume graphene involvement in this battery.

UK based Perpetuus Carbon Group and OXIS Energy agreed in June 2014 to co-develop graphene-based electrodes for Lithium-Sulphur batteries, which will offer improved energy density and possibly enable electric cars to drive a much longer distance on a single battery charge.

Another interesting venture, announced in September 2014 by US based Graphene 3D Labs, regards plans to print 3D graphene batteries. These graphene-based batteries can potentially outperform current commercial batteries as well as be tailored to various shapes and sizes.

Other prominent companies which declared intentions to develop and commercialize graphene-enhanced battery products are: Grafoid, SiNode together with AZ Electronic Materials, XG Sciences, Graphene Batteries together with CVD Equipment and CalBattery.

More >>