Posted on

Graphene in Wheels


Ever ridden a pair of wheels with Nobel prize-winning ingredients? Neither had we until now. While they look like other carbon road wheels, beneath the surface lies a layer of Graphene – ‘G+’ in Vittoria-speak – which is being touted as the next wonder material.

Vittoria claims the graphene makes the Quranos stronger and laterally stiffer, with greater impact resistance, but also lighter and with improved heat dissipation, and still more compliant. And given graphene’s properties, these claims are entirely feasible.

More >>

Posted on

Graphene in Bikes

The most obvious application for a composite material like graphene is in frames, wheels and other components currently made from carbon fibre. As Musgrove explains, “Frames are becoming extremely lightweight, and there is not a lot of weight to be shed in the current crop of high-end frames, many of which come with maximum rider weight limits. With graphene, you could take that sub 700g frame, produce it without a rider weight limit and confidently offer a lifetime warranty or even possibly go lighter. There is a potential for it, but I reckon it will come at a substantial cost.”

While graphene is still in its formative years, the high strength, low weight and bondability could make graphene an ideal composite material. Despite these mechanical characteristics, it’s graphene’s other properties that create the most exciting possibilities.

Carbon clinchers have been plagued with horror stories of catastrophic wheel failure caused by resin overheating, resulting in the tyre bead folding out like a wet taco.

“Another thing that graphene could be used for is heat dissipation. With (carbon) clinchers you have that brake pressure from the calipers. That resistance generates a lot of heat, and the epoxy starts to degrade. Graphene may be a way you could move the heat away from the brake track,” Turner said.

Let’s not forget that graphene is also a phenomenal electrical conductor. With recreational cyclist running electronic drivetrains, power meters, computers, lights, and in some cases motors, there is an increasing dependence on batteries. While friction and hub based generators have been around for quite some time, graphene could potentially allow for a different power source.

“I am being pie in the sky here, but a graphene frame could potentially be a super-capacitor which gets charged by a solar panel somewhere on the bike, constantly keeping your Di2 and lights charged,” said Luescher.

More >>

Posted on

Graphene Applications

Graphene is a sheet of carbon atoms bound together in a honeycomb lattice pattern where it is a conductor of electrical and thermal energy, extremely lightweight chemically inert, and flexible with a large surface area. It is also considered eco-friendly and sustainable, with unlimited possibilities for numerous applications, however it is difficult to manufacture.

Graphene-based batteries have exciting potential and while they are not commercially available yet, R&D is intensive and will hopefully yield results in the future.

In November 2016, Huawei unveiled a new graphene-enhanced Li-Ion battery that can remain functional at higher temperature (60° degrees as opposed to the existing 50° limit) and offers a longer operation time – double than what can be achieved with previous batteries. To achieve this breakthrough, Huawei incorporated several new technologies – including an anti-decomposition additives in the electrolyte, chemically stabilized single crystal cathodes – and graphene to facilitate heat dissipation. Huawei says that the graphene reduces the battery’s operating temperature by 5 degrees.

In June 2014, US based Vorbeck Materials announced the Vor-Power strap, a lightweight flexible power source that can be attached to any existing bag strap to enable a mobile charging station (via 2 USB and one micro USB ports). the product weighs 450 grams, provides 7,200 mAh and is probably the world’s first graphene-enhanced battery.

In May 2014, American company Angstron Materials rolled out several new graphene products. The products, said to become available roughly around the end of 2014, include a line of graphene-enhanced anode materials for Lithium-ion batteries. The battery materials were named “NANO GCA” and are supposed to result in a high capacity anode, capable of supporting hundreds of charge/discharge cycles by combining high capacity silicon with mechanically reinforcing and conductive graphene.

Graphene batteries market report

Developments are also made in the field of graphene batteries for electric vehicles. Henrik Fisker, who announced its new EV project that will sport a graphene-enhanced battery, unveiled in November 2016 what is hoped to be a competitor to Tesla. Called EMotion, the electric sports car will reportedly achieve a 161 mph (259 kmh) top speed and a 400-mile electric range.

Graphene Nanochem and Sync R&D’s October 2014 plan to co-develop graphene-enhanced Li-ion batteries for electric buses, under the Electric Bus 1 Malaysia program, is another example.

In August 2014, Tesla suggested the development of a “new battery technology” that will almost double the capacity for their Model S electric car. It is unofficial but reasonable to assume graphene involvement in this battery.

UK based Perpetuus Carbon Group and OXIS Energy agreed in June 2014 to co-develop graphene-based electrodes for Lithium-Sulphur batteries, which will offer improved energy density and possibly enable electric cars to drive a much longer distance on a single battery charge.

Another interesting venture, announced in September 2014 by US based Graphene 3D Labs, regards plans to print 3D graphene batteries. These graphene-based batteries can potentially outperform current commercial batteries as well as be tailored to various shapes and sizes.

Other prominent companies which declared intentions to develop and commercialize graphene-enhanced battery products are: Grafoid, SiNode together with AZ Electronic Materials, XG Sciences, Graphene Batteries together with CVD Equipment and CalBattery.

More >>